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A new method is defined for the calculation of X-ray and neutron powder

diffraction patterns from the Debye scattering equation (DSE). Pairwise atomic

interactions are split into two contributions, the first from lattice-pair vectors

and the second from cell-pair vectors. Since the frequencies of lattice-pair

vectors can be directly related to crystallite size, application of the DSE is

thereby extended to crystallites of lengths up to ~200 nm. The input data

correspond to unit-cell parameters, atomic coordinates and displacement

factors. The calculated diffraction patterns are characterized by full back-

grounds as well as complete reflection profiles. Four illustrative systems are

considered: sodium chloride (NaCl), �-quartz, monoclinic lead zirconate

titanate (PZT) and kaolinite. The effects of varying crystallite size on diffraction

patterns are calculated for NaCl, quartz and kaolinite, and a method of

modelling static structural disorder is defined for kaolinite. The idea of partial

diffraction patterns is introduced and a treatment of atomic displacement

parameters is included. Although the method uses pair distribution functions as

an intermediate stage, it is anticipated that further progress in reducing

computational times will be made by proceeding directly from crystal structure

to diffraction pattern.

1. Introduction

Relatively little attention has been given to the Debye scat-

tering equation (DSE) (Debye, 1915) as a means of calculating

the diffraction patterns of polycrystalline samples from first

principles. His equation may be stated as follows.

IðQÞ ¼
P

m

P

n

fm fn½sinðQrmnÞ=Qrmn�: ð1Þ

Here I(Q) represents the intensity of scattering at wavevector

magnitude Q. The latter is linked to the scattering angle, 2�,
and the wavelength of the radiation, �, by the relationship Q =

4� sin �/�. rmn represents the distance between two atoms m

and n. fm and fn are the scattering factors of atoms m and n,

these being a product of scattering power and a contribution

due to thermal vibrations. The scattering power is dependent

on Q for X-rays and independent of Q for neutrons, whereas

the contribution from thermal vibrations is dependent on Q in

both cases. For the case of m = n terms of magnitude f 2
m result.

The simple form of the DSE results from the assumption

that the atoms in a given rigid body are allowed to adopt all

orientations in space, as is the case for the atoms in the crys-

tallites of an ideal powder diffraction sample (Warren, 1969).

However, the existence of a crystal lattice is not a prerequisite

for using the formula. Use of the DSE to model diffraction

from crystallites of meaningful size has conventionally

required a large computational overhead, since very large

numbers of atom pairs enter the sum. Therefore the equation

has been applied mainly to glassy systems, for example in the

classic work of Warren (1934), where the assumption of

spherical symmetry, on average, permitted a reduction to a

one-dimensional problem. Over the past 20 years, however,

use of the DSE in modelling nanocrystalline systems has

become more common. Tettenhorst & Corbató (1988), for

example, refer to an execution time of nearly 13 min on an

IBM 3081 computer for crystals of boehmite of size 48 � 12 �

48 unit cells. In this connection the term Debye function

analysis (DFA) is now routinely employed (Gnutzmann &

Vogel, 1990; Hall, 2000; Vogel, 1998). Makinson et al. (2000)

have used the DSE to model stacking and twin faults in

metallic nanocrystals, whereas the work of Pinna (Pinna et al.,

2003; Pinna, 2005) has been concerned with inferring the

shapes of nanoparticles from X-ray diffraction.

It is shown here that the DSE can also be applied to the

diffraction patterns of conventional powders with hundreds of

millions of unit cells constituting the coherently scattering

domains. It thereby becomes applicable to systems conven-

tionally dealt with by Bragg’s law and the Rietveld refinement

approach (Rietveld, 1969). Although Grover & McKenzie

(2001) took steps in this direction by calculating distance

multiplicity functions, their work only considered cubic crys-

tallites explicitly, with dimensions of up to 50 � 50 � 50 unit

cells. Furthermore, the method to be defined here contains the



essential element of splitting interatomic pair vectors into

lattice and cell contributions.

2. The essence of the new approach

An example of a crystallite is given in Fig. 1, with dimensions

3 � 4 � 4 unit cells.

Vectors joining unit-cell origins may be referred to as

lattice-pair vectors, as is always the case in primitive lattices.

The length of the vector joining A and B, i.e. rAB, can also be

calculated via an indirect route between atoms A and B, in

which vectors between A, B and their respective unit-cell

origins are used, as well as lattice-pair vectors [Figs. 1(a,b)]. It

is seen in Figs. 1(c) and (d) that the vector joining A and B can

be regarded as the sum of a lattice-pair vector [�1, �2, 3] and

a vector joining points T and B. Since point T corresponds to

the centre of atom A translated by the lattice-pair vector, it

follows that all interatomic pair vectors can be regarded as the

sum of a lattice-pair vector and an interatomic pair vector

referred to a single unit cell (or Patterson vector). The latter

vector is referred to henceforth as a cell-pair vector.

The lattice-pair vectors that arise depend on crystallite size

and shape, as does the number of times a given lattice-pair

vector occurs. The cell-pair vectors that arise depend on the

crystal structure. This rationalization leads to the following re-

expression of equation (1), in which the essential means of

reducing the computational overhead becomes apparent.

IðQÞ ¼
P

i

P

mn;cell

Ni fmn½sinðQjri þ rmnjÞ=Qjri þ rmnj�: ð2Þ

Here the index of summation i represents a lattice-pair vector.

The second summation is over atom pairs mn within a single

unit cell, and Ni is the number of times lattice-pair vector i

occurs within the crystallite. The scattering factors fm and fn

have been brought together to form a product, i.e. fmn = fm fn.

The key to using equation (2) is to know how values of Ni

depend on crystallite shape and size. In this work, the

assumption is made that the crystallites are parallelepipedal

[as in Fig. 1(a)], such that their shape and size are defined by

the product LxLyLz, where Lx, Ly and Lz are the number of

unit cells along x, y and z, respectively. In order to calculate

the value of Ni for a lattice-pair vector [nx, ny, nz] in a crys-

tallite given by values Lx, Ly, Lz, use is made of equation (3).

Nðnx; ny; nzÞ ¼ ðLx � jnxjÞðLy � jnyjÞðLz � jnzjÞ; ð3Þ

whereby 0 � jnxj<Lx, 0 � jnyj<Ly and 0 � jnzj<Lz.

In the particular case of Fig. 2(a), for example, where Lx = 3,

Ly = 4 and Lz = 4, the equation gives the correct value for

N(�1, �2, 3) of (3 � 1)(4 � 2)(4 � 3) = 2 � 2 � 1 = 4. It has

been used earlier by Wilson (1942) and its form may be

justified by the following argument. Figs. 2(b) and (c) refer to

one-dimensional ‘crystals’ for which Lx = 1 and 2, respectively.

In the first case, N(0) = 1, signifying that there is one lattice

point only. In the second case N(0) = 2, N(�1) = 1 and N(1) =

1, corresponding to two lattice points, one lattice-pair vector

to the left of length 1 and one to the right of length 1. Similarly
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Figure 1
Two atoms A and B and their unit cells, with direct and indirect vector
linkages. (a) Summary (black dots: origins of unit cells). (b) Vectors from
(a); (c) formation of a single lattice-pair vector [�1 ,�2, 3]; (d) a change
in the order of vector summation, whereby vector TS = vector AP. TS +
SB = TB, a cell-pair vector.

Figure 2
Diagrams relating to the frequencies of lattice-pair vectors for different
crystallite sizes.



for the one-dimensional ‘crystal’ for which Lx = 3 in Fig. 2(d),

N(0) = 3, N(1) = N(�1) = 2 and N(2) = N(�2) = 1. The results

from Figs. 2(b)–(d) can be summarized by a single result:

N(nx) = Lx � |nx|. It is seen by inspection that the frequencies

of lattice-pair vectors in the two-dimensional crystal of Fig.

2(g) are given by the following two-dimensional extension:

N(nx, ny) = (Lx � |nx|)(Ly � |ny|). In view of the emerging

pattern, the result for a real three-dimensional crystal of

dimensions Lx, Ly and Lz is as given above in equation (3).

3. Structure of the article

In the remainder of this article, it is shown how the application

of equation (3) allows the computationally efficient calcula-

tion of full powder diffraction patterns. The steps required are

described by reference to four crystal structures, sodium

chloride, lead zirconate titanate (PZT), �-quartz and kaolinite,

these belonging to the cubic, monoclinic, trigonal and triclinic

crystal systems, respectively. Nine different issues have been

identified, as follows. A: cell-pair vectors; B: calculation of pair

distribution functions; C: calculation of diffraction patterns; D:

influence of crystallite size; E: partial diffraction patterns; F:

handling of site-occupancy factors; G: treatment of isotropic

atomic displacement parameters; H: treatment of anisotropic

atomic displacement parameters; I: structural disorder. These

are covered by the four systems as set out in Table 1, in such a

way as to allow a logical progression without unnecessary

repetition.

Calculated diffraction patterns are shown in order to illus-

trate these points.

4. Sodium chloride

Structural data for sodium chloride at room temperature and

pressure were taken from the article by Walker et al. (2004).

The single degree of freedom corresponds to the unit-cell

parameter, a = 5.6401 Å.

4.1. Cell-pair vectors (stage 1)

The set of cell-pair vectors was calculated by constructing a

complete unit cell of atoms, such that all atomic coordinates

lay in the range 0 � x; y; z< 1. This is necessary for the correct

encoding of the approach encapsulated by Fig. 1(a). If coor-

dinates outside this range were used, errors in the numbers of

interatomic interactions would result. This is because the

lattice-pair vectors, which have multipliers governed by

equation (3), act as linkages between complete parallelepi-

pedal boxes, with no ‘leakage’ of atoms between neighbouring

boxes allowed. Otherwise the situation would arise that

different atoms within the same physical unit cell would be

weighted differently in the Debye sum, merely according to

the logical unit cell to which they were assigned.

The next step was to calculate the components of the 64

cell-pair vectors formed from the eight atoms in the unit cell,

these forming a centrosymmetric set.

4.2. Calculation of pair distribution functions (stage 1)

Although the Debye formalism does not demand the

calculation of pair distribution functions (p.d.f.’s), this may be

regarded as a convenient intermediate stage for the purposes

of this initial work. The calculation proceeds as follows. First a

maximum interaction length, rmax, is determined from the

dimensions of the crystallite. Secondly the length rmax is

divided into equally spaced histogram classes, or bins, of width

�r. Thirdly, the population of each bin is set to zero at the start

of the calculation. Finally each pair of atoms in the crystallite

contributes once to the population of the bin to which it

belongs, this being determined by the interaction length.

The calculation of p.d.f.’s also allows a splitting of the Debye

calculation into two stages, which is useful here, since the

innovative step described in x2 only affects the first stage. In

stage 1, the lengths of all the pairwise interactions are calcu-

lated, i.e. values of |ri + rmn| in equation (2). This results in a

p.d.f. for each pair type, i.e. Na� � �Na, Na� � �Cl and Cl� � �Cl. In

stage 2, diffraction patterns are calculated from the p.d.f.’s, as

described in the following sections.

Over the whole Debye sum, as expressed by equations (1)

or (2), each pairwise interaction is counted twice: an interac-

tion between atom m in unit cell p and atom n in unit cell q

gives rise to the same interaction length as an interaction

between atom n in unit cell q and atom m in cell p. However,

no new information is conveyed by the second interaction,

since only the interaction length is important. Following the

splitting of pairwise atomic interactions into lattice- and cell-

pair vector contributions, a choice can be made as to whether

centrosymmetry is maintained within the set of lattice-pair

vectors or within the cell-pair vectors. The decision was taken

here to maintain the full set of cell-pair vectors, i.e. in an

ordered structure, for each vector with components x, y, z

there will be a vector with components �x, �y, �z. Conse-

quently only one half of the set of lattice-pair vectors needs to

be considered explicitly.

A full set of lattice-pair vectors for a crystallite of dimen-

sions LxLyLz would be given by all combinations of [nx, ny, nz]

within the following ranges: �ðLx � 1Þ � nx � ðLx � 1Þ;

�ðLy � 1Þ � ny � ðLy � 1Þ; �ðLz � 1Þ � nz � ðLz � 1Þ. Since

this set is to be halved, the decision was taken to halve the

above z range to 0 � nz � ðLz � 1Þ. Physically this means that

only ‘ascending’ lattice vectors in Figs. 1(a) and 2(a) are

counted. This halving process requires particular attention

when nz = 0, whereby the guiding principle is that no atomic

pairwise interaction is to be counted twice. Accordingly
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Table 1
Key to sections in which points A–I are dealt with.

Points

System A B C D E F G H I

NaCl x4.1 x4.2 x4.3 x4.4 x4.5
PZT x5.4 x5.1 x5.2 x5.3
�-Quartz x6.1 x6.2
Kaolinite x7.2 x7.3 x7.4 x7.5 x7.1



�ðLx � 1Þ � nx � ðLx � 1Þ but the ny range is halved:

0 � ny � ðLy � 1Þ when nx � 0 and 1 � ny � ðLy � 1Þ for nx <

0. When nx = ny = nz = 0, i.e. within a unit cell, each interaction

is given a weighting of one half, as a consequence of the

centrosymmetry of the set of cell-pair vectors.

Interatomic distances to identify the p.d.f. bin numbers were

calculated by a nested loop program structure, with the outer

loop proceeding through the set of cell-pair vectors rmn. The

three inner loops corresponded to the above required ranges

of nx, ny and nz in the lattice-pair vectors ri. P.d.f. bins were

progressively populated in amounts given by equation (3) for

the particular nx, ny and nz values. In the course of these

calculations, a transformation from fractional to Cartesian

coordinates was undertaken by means of standard orthogo-

nalization matrices: cell-pair vectors were transformed prior to

the nested-loop structure, whereas lattice-pair vectors were

transformed dynamically within the loops, by means of

increments in Cartesian space.

The calculation of p.d.f.’s as an intermediate step takes

crystal symmetry into account implicitly, in that interactions of

equal length are brought together into the same bin. This

reduces the computation time in stage 2.

4.3. Calculation of diffraction patterns (stage 2)

4.3.1. The Debye sum expressed in terms of pair
distribution functions. The p.d.f. for a given atom pair type s

may be expressed as ps(j), where j is the bin number and p its

population. Accordingly the Debye scattering equation now

takes on the form

IðQÞ ¼
P

s

fs

P

j

ps½sinðQj�rÞ=Qj�r�: ð4Þ

Here the first summation is over the different pair types and

the second over all bins in the corresponding p.d.f. The symbol

�r corresponds to the bin width of the p.d.f., with fs the

product of the scattering factors fm and fn of the two atom

types making up the pair. Since atomic displacement para-

meters (ADPs) are required in the stage 2 calculations, a

different pair type s must be defined for each different set of

ADP values, even when the same two atom types are involved.

4.3.2. Choice of Q values. A practical computational

approach is to consider discrete Q values of constant separa-

tion, from which results can be generated for comparison with

experiment. The maximum value of Q follows directly from

the highest 2� angle. Ideally the increment �Q should be small

enough to match the separation of experimental data points at

high 2� values for the radiation component with highest

wavelength. For example, with Cu K�1/K�2 radiation, which

has a maximum wavelength of 1.54433 Å, an increment �Q

equal to 0.001163 Å�1 matches a 2� increment of 0.02	 at 70	

2�.

4.3.3. Atomic scattering factors. The Q-dependent values

of atomic scattering factors for X-rays were calculated using

fmðQÞ ¼
P4

i¼1

ai exp �biQ
2=16�2ð Þ þ c: ð5Þ

Values of coefficients ai, bi and c for different atom types m

were taken from tabulated values in International Tables for

X-ray Crystallography Volume IV (1974).

Values of the corresponding factors for neutrons, i.e.

neutron scattering lengths, were taken from the website http://

www.ncnr.nist.gov/resources/n-lengths/, these being indepen-

dent of Q.

4.3.4. Choice of bin width, Dr and computation of I(Q).
Just as discrete Q values are taken, so discrete values of

pairwise interatomic separation are used, with an accuracy

determined by the bin width of the p.d.f. Although this width

does not significantly affect computation times in stage 1 (i.e.

calculation of p.d.f.’s), smaller values of �r necessarily lead to

longer computation times in stage 2, at which I(Q) is calcu-

lated. As it is anticipated that an improved method will be

developed in future, whereby p.d.f.’s will not be used, the

decision was taken to employ a direct method for calculating

I(Q). Thus computational speed was not a major consideration

in stage 2, in comparison to stage 1. With respect to I(Q), a

fixed array of 640 000 equally spaced values of sin � was

calculated, spanning the principal range 0<� � 2�. Calcu-

lated values of the product Qr (in allowed discrete intervals of

�Q�r) were mapped into the principal range, thereby

accessing the appropriate element of the sin � array and

exploiting the periodicity of this function.

Since Pinna (2005) has highlighted the errors arising in the

p.d.f. method through the representation of interatomic

distances as histogram classes of finite width (bin numbers), an

investigation was carried out of the influence of bin width on

the calculated diffraction pattern (Fig. 3). The convention has

been adopted here, and in several subsequent figures, of

plotting the square root of intensity, in order to provide more

detail on the shapes of weaker maxima. The units of intensity

are defined in x4.3.5.
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Figure 3
Computed diffraction patterns utilizing X-ray scattering factors for a
crystallite of NaCl of dimensions 40 � 40 � 40 nm. (a) Exact calculation
(without use of p.d.f.); (b) with p.d.f. of bin width 0.001 Å; (c) with p.d.f. of
bin width 0.01 Å.



In the exact calculation, which was carried out as a refer-

ence, the exact distances between atom pairs were stored at

the end of stage 1, rather than the numbers of atom pairs in

different bins of discrete width. The significant features of the

pattern in Fig. 3(b), for which a bin width of 0.001 Å was used,

are in good agreement with the exact pattern of Fig. 3(a). By

comparison, the pattern of Fig. 3(c), to which a bin width of

0.01 Å applies, is characterized by significant noise in the

background. As a consequence, the decision was taken to

utilize bin widths of 0.001 Å for the diffraction patterns

generated in this article, in anticipation that the use of p.d.f.’s

will be superseded in future work. Note that the bases of the

two peaks at approximate Q values of 2.22 and 4.45 Å�1 show

an oscillatory character, which is due to the finite crystallite

size.

4.3.5. Scaling of intensities. Although there is no need to

apply absorption corrections for the purposes of this work, the

dependence of the calculated intensity on crystallite size is

relevant. The basic consideration here is to assume that the

same volume of sample is irradiated, irrespective of crystallite

size. Further, a random orientation of crystallites is assumed.

Consequently, the smaller the crystallite volume, the greater

the number of crystallites that will be correctly oriented

for a diffracted signal to be detected. Thus the

intensity calculated from a given crystallite should be

scaled by a factor inversely proportional to its volume. Since

equation (3) can also be written as Nðnx; ny; nzÞ ¼

LxLyLzð1� jnxj=LxÞð1� jnyj=LyÞð1� jnzj=LzÞ, and crystallite

volume is equal to VucLxLyLz, with Vuc the unit-cell volume,

bin populations were calculated by using the factor

ð1� jnxj=LxÞð1� jnyj=LyÞð1� jnzj=LzÞ. A multiplying factor

of 1/[NucVuc], with Nuc the number of atoms in the unit cell,

was subsequently applied at the end of stage 2. This procedure

gives rise to intensities per atom (in electronic units), which

apply across all crystallite sizes.

The decision was taken not to apply a Lorentz–polarization

factor, as this is often routinely taken into account by the

software associated with modern diffractometers.

4.3.6. Conversion fromQ to 2h values. Since Q = 4� sin �/�,

2� ¼ 2 arcsinðQ�=4�Þ. Since the intensities are calculated at

discrete, equally spaced Q values, the mapping into equally

spaced 2� angles is carried out by a process of interpolation. A

further consideration is the relative weighting of the K�1 and

K�2 intensities, which was taken as 2:1 in this work.

4.4. Influence of crystallite size

X-ray diffraction patterns of NaCl are given in Fig. 4,

without temperature-factor corrections, for ten nominal crys-

tallite sizes.

Since number of unit cells is an integer, the real dimensions

will deviate from these nominal values. For example, the

203 nm3 sample corresponds to a cluster of 35 � 35 � 35 unit

cells, of true dimensions 19.740353 nm3. The largest sample, of

volume 2003 nm3, corresponds to a linear dimension of 0.2 mm,

this being a typical coherence length for a conventional

powder in the micron range.

In Figs. 4(a,b) the maxima become successively taller and

narrower as the crystallite dimension is increased in the range

between 20 and 100 nm. The observed jaggedness in some

maxima is a consequence of the finite increment in 2� of 0.02	,

as is also the case for most commercial diffractometers. For

larger crystallite sizes between 120 and 200 nm [Figs. 4(c,d)],

the predominant effect is no longer peak narrowing, although

this still takes place, but a separation of the maxima due to Cu

K�1 and Cu K�2 radiation.

4.5. Partial diffraction patterns

Owing to the linearity of the Debye sum, it is possible to

subdivide it into contributions from different types of atom

pairs (Fig. 5).

The emergence of two sharp minima is to be noted, with

intensities below the background level in the partial diffrac-

tion pattern of Na� � �Cl atom pairs, at angles of 27.4 and 53.9	

2�, respectively. These correspond to the {111} and {311}

reflections in a conventional indexing of the pattern, for which

indices h, k and l are all odd. The other Na� � �Cl reflections,

with all even indices, are associated with maxima.

5. Lead zirconate titanate

A monoclinic structural model of the perovskite system

Pb(Zr0.54Ti0.46)O3 (PZT) was selected (Frantti et al., 2000) in

order to illustrate further aspects of the approach. The

continued investigation of this ceramic is of technological

significance because of its widespread use as a piezoelectric

actuator and sensor. The unit cell proposed is a = 5.76907, b =
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Figure 4
Computed diffraction patterns in the regions of the first and second
maxima for NaCl, for Cu K�1/K�2 radiation. (a,b) Cubic crystallites of
lengths 20, 40, 60, 80 and 100 nm; (c,d) cubic crystallites of lengths 120,
140, 160, 180 and 200 nm.



5.74266 and c = 4.08900 Å, with � =90.4968	. Zirconium and

titanium ions are disordered over the octahedrally coordi-

nated B sites, whereby the model assigns different coordinates

to the Zi4+ and Ti4+ ions, this representing a difficulty for the

DSE approach to deal with. Anisotropic atomic displacement

parameters are assigned to the lead and oxygen ions, whereas

the thermal motion of the B-site ions is represented by

isotropic displacement parameters.

5.1. Handling of site-occupancy factors

A p.d.f. essentially conveys information concerning the

coordinates of different atomic sites within the crystallite.

Thus the existence of two or more atoms at a particular atomic

site, each with fractional occupancy factors, was handled by

defining a single, complex atom made up of contributing atoms

in proportion to their occupancy factors. In cases where the

total occupancy of a site was less than one, as in this PZT

system, a vacancy was assigned to the non-occupied propor-

tion of the site. P.d.f.’s were calculated in stage 1 assuming total

occupancies of one on all sites, with the identities of the

complex atoms carried over into stage 2 in order to calculate

the diffraction patterns.

Two difficulties arise from this approach. First it is possible

that close contacts are generated between atomic sites that are

fractionally occupied. This was the case in this system, where

erroneous contacts of length 0.247 Å were generated between

Ti4+ and Zr4+ ions. These can be dealt with by straightforward

elimination from the relevant p.d.f. Secondly, special handling

is required for pairwise atomic interactions of length zero

when complex atoms are involved, since it is a physical

impossibility for two or more different atom types, or for an

atom and a vacancy to occupy a single atomic site. Consider a

case of atoms m and n contributing to a complex atom in the

proportions of their occupancy factors SOF(m) and SOF(n).

For all interactions of non-zero length, the contribution to the

diffracted intensity scales as fm fn SOFðmÞ SOFðnÞ, where fm, fn

are the atomic scattering factors of m and n. Although this

result would also accidentally apply to interactions of zero

length when m = n and SOF(m) = 1, the total contribution to

the diffraction pattern for identical m and n of interaction

length zero has the fundamental form Nuc½SOFðmÞ f 2
m�. Here

Nuc is the number of unit cells in the crystallite.

5.2. Treatment of isotropic atomic displacement parameters

The proposed model for PZT contains isotropic atomic

displacement parameters for the titanium and zirconium

atoms, Uiso, with anisotropic displacement parameters for the

other three atom types. The standard Debye–Waller factor,

when expressed in terms of the parameter Q, takes on the

form

TðQÞ ¼ exp 8�2Uiso sin2 �=�2
� �

¼ exp �UisoQ2=2
� �

: ð6Þ

This factor was used to calculate temperature-modified atomic

scattering factors fm(Q)T(Q) in stage 2, with fm(Q) calculated

according to equation (5).

5.3. Treatment of anisotropic atomic displacement para-
meters

A full treatment of anisotropic displacement parameters

(ADPs) is problematical for the current method, since direc-

tional information is lost when p.d.f.’s are calculated as an

intermediate stage. This difficulty could be circumvented by

storing the effects of the Gaussian broadening of the pairwise

atomic interaction distances as modified bin occupancies in

the p.d.f.’s.1 However, this option was not adopted, since the

increase in computational time can not be justified by the

benefit. Furthermore, as the use of p.d.f.’s as an intermediate

stage will be discarded in future work, this effort is not

essential here. Instead a curtailed treatment of ADPs was

carried out, in that equivalent isotropic temperature factors

were derived. As described by Trueblood et al. (1996), ADP

tensors (whether in bij, Uij or Bij notation) can be converted

routinely to equivalent isotropic ADPs, Ueq, for substitution

into equation (5) during stage 2 of the calculation. Thus the

loss of directional information brought about by the use of

p.d.f.’s was partly circumvented by a method requiring very

little extra computational overhead.

5.4. Calculation of diffraction patterns

The structural model of PZT proposed by Frantti et al.

(2000) led to there being five effective atom types [Pb, Zr, Ti,

O(ADP 1), O(ADP 2)] and so 15 different pair types (5 + 4 + 3

+ 2 + 1). Whereas stage 1 of the calculation could be carried

out relatively rapidly, the execution times for stage 2 were

considerably longer, mainly as a consequence of there being

15 separate p.d.f.’s (see x8.2). This also points to the need to

develop a single-stage calculation in future. The results are

given in Fig. 6.

Peak positions are in agreement with the hkl reflections

generated from the unit-cell parameters, as demonstrated at
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Figure 5
The full diffraction pattern for NaCl (Cu K�1/K�2 radiation; crystallite
dimension 40 nm) as a linear superposition of partial diffraction patterns
for Na� � �Na, Cl� � �Cl and Na� � �Cl atom pairs.

1 The method would require a calculation of the eigenvectors and eigenvalues
of the ADP tensor, followed by a calculation of the mean-squared
displacement along the interatomic vector, utilizing an equation proposed
by Nelmes (1969).



higher magnification for the cluster of maxima at approxi-

mately 55	 2� in Figs. 7(a,b). The advantage of losing the Cu

K� peak splitting by utilizing neutrons of wavelength 1.47 Å is

also seen.

6. Quartz

Since quartz is extremely widespread as a mineral present in

ceramic raw materials such as plastic clays and raw kaolins, its

presence and concentration are frequently monitored by

X-ray diffraction. The structural model taken as the basis of

the calculations here was proposed by Kihara (1990). This

refers to a single crystal of natural left-handed �-quartz of

trigonal symmetry in space group P3221, for which X-ray data

were collected at room temperature and pressure.

6.1. Calculation of diffraction patterns

Seventy-four different cell-pair vectors were generated

from the nine atoms in the rhombohedral cell with hexagonal

axes, with two different sets of ADPs utilized at the outset, one

for silicon and the other for oxygen atoms. Accordingly there

are only three atom-pair types, Si� � �Si, Si� � �O and O� � �O.

6.2. Influence of crystallite size

The question of particle size is of importance when selecting

ceramic raw materials. Accordingly attention is paid to this

here by generating X-ray diffraction patterns of quartz with

crystallite lengths of 40, 80, 120, 160 and 200 nm. Owing to the

geometry of the unit cell, the resulting crystallites had a

prismatic habit, with clusters of size ranging from 81� 81� 74

to 407 � 407 � 370 unit cells.

Calculated diffraction patterns for the five different crys-

tallites are given in Fig. 8. It is directly seen how increasing

crystallite size leads to narrower and higher maxima.

Also of interest is the development of the characteristic

feature of the ‘five fingers of quartz’ as the crystallite size

increases (Fig. 9a), this being a commonly used test for

diffractometer alignment. The five fingers cannot be resolved

at the smallest crystallite length of 40 nm. The common

industrial practice of utilizing the f212g reflection at 50.2	 2� to

calculate quartz concentration is indicated in Fig. 9(b). This

has the advantage of there being no overlaps with reflections

from other common minerals, such as feldspars and clay

minerals. The total areas under the computed curves between

the 2� angles of 49.00 and 51.50	 are listed in Table 2.

In summary, the area is relatively invariant to crystallite

size, as is commonly known. The mean area is equal to 0.7039	,

with an r.m.s. deviation of 0.80%, the latter value being

consistent with the error normally associated with this test

method.
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Figure 7
(a) Magnification of Fig. 6(b) in the 2� range from 54 to 56	; (b) as (a), but
with a 2� resolution of 0.002	 instead of 0.02	; (c) calculated diffraction
pattern due to the same hkl planes for neutrons of wavelength 1.47 Å.
The vertical bars indicate the maxima for hkl values in the forms f202g,
f311g, {022}, f131g, {202}, {311} and {131}, from left to right, as calculated
from the unit-cell parameters (2� resolution 0.005	).

Figure 6
Computed diffraction patterns for crystallites of PZT of dimension 100 �
100 � 100 nm with Cu K�1/K�2 radiation (a) without atomic displace-
ment parameters; (b) with isotropic and equivalent isotropic atomic
displacement parameters.



7. Kaolinite

Just as quartz is present in many ceramic raw materials,

kaolinite is a very important mineral within the clay mineral

fraction. However its quantitative determination by X-ray

diffraction is difficult because of three factors: first, the

predominance of fine particles in the equivalent spherical

diameter fraction < 0.2 mm, secondly the widespread occur-

rence of structural disorder, and thirdly the occurrence of

preferred orientations in the powder sample. The first two

factors can be handled directly by the DSE method, with the

third capable, in principle, of being treated by a subsequent

correction.

The crystal structure model proposed by Bish (1993) was

used as a basis for the calculations here. This was derived from

a low-temperature (1.5 K) powder neutron study of a

composite sample taken from several geodes of Keokuk, Iowa

kaolinite. The low-symmetry, triclinic space group C1 was

adopted, with isotropic temperature factors quoted for Al, Si

and O atoms and anisotropic factors given for the H atoms. In

view of the low temperature to which the data apply, it is

anticipated that the high-angle intensities will be somewhat

larger than is the case at room temperature. However, the data

allow the potential of the new DSE approach to be evaluated

in modelling structural disorder. In essence the aim is to

maintain the computational advantage introduced by the

cellular method [as encapsulated by equation (3)] without

losing the powerful generality of the DSE itself in being able

to calculate the diffraction patterns of all solid-state structures.

7.1. Structural disorder

Mechanisms of structural disorder in kaolinites have been

examined by Artioli et al. (1995) and their corresponding

diffraction patterns calculated with DIFFaX (Treacy et al.,

1991), a computer program which is able to model the

presence of planar faults. The simplest model of kaolinite

disorder is used in the present work, which goes back to the

model of Plançon & Tchoubar (1975), where shifts between

the 1:1 layers of 0, +b/3, �b/3 are allowed.
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Figure 8
Calculated diffraction patterns of quartz (Cu K�1/K�2 radiation) for five
different crystallite lengths: (a) 40 nm; (b) 80 nm; (c) 120 nm; (d) 160 nm;
(e) 200 nm.

Table 2
Total areas under the split f212g reflection for different crystallite lengths.

Increment in 2� = 0.02	.

Crystallite length (nm) Area (	)

40 0.6931
80 0.7037

120 0.7068
160 0.7080
200 0.7079

Figure 9
(a) Development of the five fingers of quartz for Cu K�1/K�2 radiation, as
a result of the splitting of the f322g, f223g and f331g reflections, as shown
for crystallite lengths of 40, 120 (thick line) and 200 nm. (b) Use of the
f212g reflection to quantify quartz concentrations in ceramic raw
materials, as shown for five crystallite lengths of 40, 80, 120, 160 and
200 nm.



A more general definition of the lattice-pair vectors intro-

duced in x2 is now required. Accordingly, these vectors still

link space-filling parallelepipedal cells, but these cells are no

longer constrained to be identical to one another. Thus

equation (3) is replaced by three equations, one for each type

of interlayer shift, k.

Nkðnx; ny; nzÞ ¼ ðLx � jnxjÞðLy � jnyjÞðLz � jnzjÞwkðnz; ’disÞ:

ð7Þ

Here wk(nz, ’dis) is the weighting, or the relative contribution

made by layer pairs with shift-type k to the p.d.f. This

weighting will depend on the value of nz and the degree of

disorder, ’dis, a parameter which is allowed to vary between

zero and one. In the case of disordered kaolinite, k is equal to

one for a relative layer shift of zero, two for a relative layer

shift of +b/3 and three for a relative layer shift of �b/3, such

that w1 + w2 + w3 = 1.

As described in x4.2, nz values are constrained to be zero or

positive. For a fully ordered structure, all weights for k = 1 are

equal to one, whereas all weights for k = 2 or k = 3 are equal to

zero. For a fully disordered structure, all weights for nz 6¼ 0 are

equal to 1/3, whereas k = 1 weights for nz ¼ 0 are equal to one,

with k = 2 and k = 3 weights for nz ¼ 0 equal to

zero. This reflects the impossibility of a relative

layer shift within a layer. This situation may be

summarized as follows: w1(nz, 0) = 1, w2(nz, 0) =

0, w3(nz, 0) = 0 (fully ordered); w1(0, 1) = 1,

w2(0, 1) = 0, w3(0, 1) = 0, wkðnz 6¼ 0; 1Þ ¼ 1=3

(fully disordered).

The parameter ’dis may be regarded as a

continuous variable with values between 0 and 1.

However, the analytical derivation of the weights

for intermediate degrees of disorder, i.e.

0 < ’dis < 1, is not straightforward. Consequently

a random-number generator was employed to

generate concrete sequences of layers, from

which the weights could be derived. Since a

sequence of real numbers p between 0 and 1 is

generated, two critical values, p1 and p2, were

defined in order to define value ranges to which

different relative layer shifts apply. These depend

on ’dis as follows.

p1 ¼ 1� 2’dis=3; p2 ¼ 1� ’dis=3: ð8Þ

These criteria were applied by carrying out up to three tests.

Test 1 is carried out first, with test 2 only applied if test 1 fails.

Similarly test 3 is only carried out if test 2 fails.

Test 1: 0 � p � p1: relative shift 0;

Test 2: p1 < p � p2: relative shift þ b=3;

Test 3: p2 < p � 1: relative shift � b=3: ð9Þ

A sequence of ten random numbers p is given in Table 3 for

illustrative purposes. Proceeding from the bottom of the table

to the top, the absolute displacements result from the relative

shifts between adjacent layers. These in turn are generated

from the p values, whereby their interpretation depends on

critical values p1 and p2.

The values in Table 3 are now used to determine the

number of times different relative shifts arise for the various

values of ’dis. This process is summarized in Table 4, where the

case of ’dis = 0.5 has been taken as an example.

7.2. Cell-pair vectors

The existence of three different relative layer shifts is

handled by generating three different unit cells, which may be

labelled A, B and C. A is a normal unit cell, i.e. one where all

atoms have absolute displacements of zero. B is a cell where

the y coordinates of all atoms are displaced by +1/3 and C is a

cell in which the y coordinates of all atoms are displaced by

�1/3. Three different sets of cell-pair vectors are generated,

corresponding to k values 1, 2 and 3. A relative shift of zero is

modelled (i.e. k = 1) by generating the set of cell-pair vectors

resulting from pairing an A cell with itself, as in an ordered

structure. Relative layer shifts of +b/3 (k = 2) and �b/3 (k = 3)

are modelled by generating the sets of cell-pair vectors

resulting from cell A–cell B and cell A–cell C pairs, respec-

tively.
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Table 3
Absolute layer displacements for 1:1 layers 0 to 10, corresponding to a given sequence of
random numbers.

The displacements generated depend on ’dis.

’dis = 0 ’dis = 0.25 ’dis = 0.5 ’dis = 0.75 ’dis = 1
p1 = 1.0000 p1 = 0.8333 p1 = 0.6667 p1 = 0.5000 p1 = 0.3333
p2 = 1.0000 p2 = 0.9167 p2 = 0.8333 p2 = 0.7500 p2 = 0.6667

L p Absolute layer displacement

10 0.7158 0 +b/3 �b/3 +b/3 0
9 0.2772 0 +b/3 +b/3 0 +b/3
8 0.9316 0 +b/3 +b/3 0 +b/3
7 0.2575 0 �b/3 �b/3 +b/3 �b/3
6 0.8910 0 �b/3 �b/3 +b/3 �b/3
5 0.6316 0 +b/3 0 �b/3 0
4 0.5342 0 +b/3 0 +b/3 �b/3
3 0.8744 0 +b/3 0 0 +b/3
2 0.0330 0 0 +b/3 +b/3 �b/3
1 0.7151 0 0 +b/3 +b/3 �b/3
0 Start: 0 0 0 0 0

Table 4
Frequencies of occurrence, n, together with corresponding weights
w(nz, 0.5) for the layer sequence of the ’dis = 0.5 structure in Table 3.

nz = �L, the difference in L between a pair of atomic layers in Table 3.

nz n(0) n(+b/3) n(�b/3) w1(nz, 0.5) w2(nz, 0.5) w3(nz, 0.5)

10 0 0 1 0.0000 0.0000 1.0000
9 0 2 0 0.0000 1.0000 0.0000
8 1 2 0 0.3333 0.6667 0.0000
7 2 0 2 0.5000 0.0000 0.5000
6 1 2 2 0.2000 0.4000 0.4000
5 1 4 1 0.1667 0.6667 0.1667
4 2 3 2 0.2857 0.4286 0.2857
3 2 1 5 0.2500 0.1250 0.6250
2 1 2 6 0.1111 0.2222 0.6667
1 5 2 3 0.5000 0.2000 0.3000
0 11 0 0 1.0000 0.0000 0.0000



7.3. Calculation of pair distribution functions

The generation of p.d.f.’s is controlled by equation (7), with

weights wk derived from the results of the random-number

generator, as described in x7.1. The appropriate set of cell-pair

vectors is used for a given value of k.

7.4. Calculation of diffraction patterns

Since the p.d.f.’s contain all the information relating to

structural disorder and crystallite size, X-ray diffraction

patterns are calculated as described in x4.3. In order to reduce

computation times, atomic pair interactions involving the

weakly scattering H atoms were disregarded. Results indica-

tive of the influence of structural disorder were generated by

considering crystallites with dimensions of 200 nm in the x and

y directions and 20 nm in the z direction, thereby implying the

well known platy morphology of kaolinite. The resulting

clusters consisted of 388 cells in the x direction, 223 in the y

direction and 27 in the z direction. The result obtained for

fully ordered kaolinite is given in Fig. 10(a).

Noticeable here are the oscillations in the diffraction

pattern from 5	 2� up to the first maximum at 12.4	, the latter

corresponding to the basal 001 reflection. In order to inves-

tigate whether these could be suppressed, a lower �r resolu-

tion was adopted for Fig. 10(b), although no significant

changes are observed. Since the diffraction patterns in Figs.

10(a,b) are qualitatively similar, the lower resolution was

adopted for the rest of the kaolinite work, in order to reduce

computation times at stage 2. It was subsequently concluded

that these oscillations are due to the shorter crystallite length

along the z axis, since the adoption of an equidimensional

crystallite for Fig. 10(c) led to their disappearance.

Diffraction patterns for fully disordered kaolinite, i.e. for

’dis = 1, were calculated both analytically, using the weights

described in x7.1, and by means of a random-number

generator (Fig. 11). Whereas there is complete agreement in

the region of the 001 reflection at 12.4	, the curve associated

with the random-number generator is considerably noisier

compared to the underlying smooth, analytically generated

curve. This observation points to the weakness of the random-

number approach in its raw form. The sequence of random

numbers applies to a single crystallite, which is assumed to be

repeated in random orientation throughout the whole sample.

In practice, the arbitrariness of the random numbers used

within this single crystallite will lead to varying results, such

that an average diffraction pattern based on many random

sequences should really be generated. In the limit, this aver-

aging process would generate identical weights to the analy-

tical approach. Alternatively, the weights for the different

layer shifts for cases of intermediate disorder (0 < ’dis < 1)

could be calculated analytically using a ‘probability tree’. The

resolution of these issues is reserved for future work.

The two predominant effects of complete disorder are the

disappearance of many reflections, together with a general

increase in the background level of the diffraction patterns.

The capability of the method to calculate diffraction

patterns for intermediate degrees of disorder (’dis = 0.25, 0.50,

0.75) is shown in Fig. 12, with the understanding that the

random-number-generator-based calculation of the weights

will give rise to noisy curves. As expected, basal reflections 001
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Figure 10
Calculated X-ray diffraction patterns of fully ordered kaolinite (’dis = 0)
for Cu K�1/K�2 radiation. (a) Crystallite of dimensions 200 � 200 �
20 nm with �r = 0.001 Å; (b) as (a), but with �r = 0.01 Å; (c) crystallite of
dimensions 200 � 200 � 200 nm with �r = 0.001 Å.

Figure 11
Computed diffraction patterns for crystallites of disordered kaolinite (’dis

= 1) of dimension 200� 200� 20 nm in a significant diffraction range (Cu
K�1/K�2 radiation). Smooth curve: analytically generated; noisier curve:
obtained with a random-number generator. The angles of reflections in
ordered kaolinite are shown as a comparison.



and 002 (at 2� angles of 12.4 and 24.9	) have identical heights-

over-background in all five patterns. A progressive disap-

pearance of reflections in the region between 20 and 30	 2� is

observed as ’dis increases from 0 to 1.

7.5. Influence of crystallite size

The question of particle-size distribution is of primary

importance for an understanding of the ceramic properties of

clays, in particular their plasticity and suitability for different

forming processes. Fig. 13 shows a sequence of diffraction

patterns calculated for geometrically similar platelets of aspect

ratio 1:10.

Three reflections are highlighted because of their particular

interest, i.e. 001 at 12.4	 2�, 002 at 25.0	 2� and 060 at 62.3	 2�.

The intensities of the first two basal reflections disappear

completely at the smallest crystallite size, with considerable

peak smearing also observed in the d = 40 crystallite. With

respect to the high-angle 060 reflection, a considerable

reduction in intensity is observed with decreasing particle size.

It is to be noted how a wedge shape is generated in Fig.

13(a) between 19 and 30	 2�, which is similar in profile to that

of disordered kaolinite in Fig. 11. However this is merely due

to a reduction in particle size and is not connected with

disorder. The key symptom for a size effect is the reduction in

intensity of the 002 reflection, which lies within this angle

range. Such a reduction is not observed in completely disor-

dered kaolinite [see Figs. 11 and 12(e)]. The basis for a re-

evaluation of the X-ray diffraction patterns of kaolinite-

containing clays has thus been created.

8. Discussion

8.1. Summary of progress made

The essential step in this work

has been to make a splitting of

pairwise atomic interactions into

two parts, a lattice-pair vector and

a cell-pair vector part. Separate

treatment of lattice-pair vectors

made possible the application of

equations (3) and, more gener-

ally, (7). This brought about a

saving in computation time suffi-

cient to allow the DSE to be

applied to crystallites of conven-

tional, i.e. non-nanoparticle, size,

for which the relevant upper

length value for diffraction is also

influenced by the coherence

length of the radiation. The

treatment of the cell-pair vector

part has been developed suffi-

ciently to indicate how disordered

crystalline systems can be

modelled with the DSE, whilst
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Figure 12
Calculated diffraction patterns (Cu K�1/K�2 radiation) for a crystallite of kaolinite of dimensions 200� 200
� 20 nm, for the following values of ’dis: (a) 0.00; (b) 0.25; (c) 0.50; (d) 0.75; (e) 1.00.

Figure 13
The dependence of diffraction pattern on crystallite size, as seen for a
series of platelets of dimensions d� d� d/10 nm of ordered kaolinite (Cu
K�1/K�2 radiation). (a) d = 20; (b) d = 40; (c) d = 80; (d) d = 120; (e) d =
160. The intensities of the three reflections linked by the dashed lines are
particularly sensitive to crystallite size.



maintaining the formalism of equation (7). The

ability of the Debye approach to generate

diffraction patterns with full backgrounds and

complex peak profiles has been demonstrated,

without the need to specify idealized, para-

meterized peak shapes. The DSE also naturally

delivers full information on the influence of

particle size and morphology on diffraction

patterns. Since questions of computation time

have not been addressed so far, a discussion of this

is given in the following section. To round off, a

prognosis of necessary future work is given in x8.3,

in order to develop points that have arisen in this

article.

8.2. Issues of computation time

8.2.1. Stage 1. The rate-determining step in the algorithm

for calculating p.d.f.’s corresponds to the calculation of lengths

r of the interatomic vectors as sums of lattice- and cell-pair

vectors [equation (2)]. Since the number of times a particular

lattice-pair vector will arise in a given crystallite, Nðnx; ny; nzÞ,

is conveyed by equation (3), the calculation of the length of a

given lattice-pair vector, r, only needs to be carried out once,

instead of Nðnx; ny; nzÞ times. Thus a factor of acceleration

may be calculated, which is given by the ratio of the number of

distance calculations in a conventional algorithm to the

number of distance calculations in the new algorithm.

In a conventional algorithm, atom pairs are considered one

by one. If no interactions are counted twice, the number of

distance calculations for a cluster of Natom atoms will be given

by 1
2Natom(Natom + 1). Natom is given by the product of the

number of atoms in the unit cell and the number of unit cells in

the crystallite. If the simplifying assumption is made that there

are equal numbers of unit cells along all three axes, Lx = Ly =

Lz = L. Thus Natom = NucL
3, with Nuc the number of atoms in

the unit cell.

From x4.2, the number of different lattice-pair vectors in the

new method is equal to 1
2[(2Lx � 1)(2Ly � 1)(2Lz � 1) � 1].

For the simplified crystallite this product is equal to 4L3
� 6L2

+ 3L � 1. The number of distance calculations is obtained by

multiplying the result by the number of different cell-pair

vectors, which is approximately equal to but always less than

N2
uc. To this are added N2

uc distance calculations for the case nx

= ny = nz = 0. Thus the number of distance calculations, Ncalc, is

given by N2
ucð4L3 � 6L2 þ 3LÞ and the theoretical factor of

acceleration by

faccel ¼
L3 þ ð1=NucÞ

2½4� ð6=LÞ þ ð3=L2Þ�
’

L3

8½1� ð3=2LÞ�
; ðL
 1Þ:

ð10Þ

Thus for a crystallite of dimensions 50� 50� 50 unit cells, L =

50 and the factor of acceleration will be approximately 16 108.

A calculation using a traditional Debye algorithm with an

execution time of 5 min will now take 0.02 s.

In spite of this convincing factor of improvement, the

number of distance calculations in the new method, Ncalc, is

strongly dependent on L, as shown in Fig. 14 for the relevant

Nuc values: NaCl: 8; quartz: 9; PZT: 10; kaolinite (no H): 26:

kaolinite (with H): 34.

The conversion of values of Ncalc into an elapsed execution

time depends on the computer, the code and the compiler. The

total elapsed time will be approximately equal to Ncalctcalc,

where tcalc is the time taken for a distance calculation. The

elapsed times quoted in Table 5 were measured on a standard

PC equipped with an IntelCore2 Duo CPU E6850 processor

running at 3.00 GHz.

Compilation conditions A, B and C are compared for the

smallest crystallites, from which a trend emerges. In view of

superiority of conditions C, under which the code is executed

in parallel, only these values are quoted for the three larger

crystallites. The dependence of elapsed time on crystallite

length d and number of atoms in the unit cell is broadly

consistent with Fig. 14. The absolute values of time quoted

here indicate how there is scope for further optimization of

the calculations, as discussed in x8.3.
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Figure 14
Dependence of number of distance calculations on number of unit cells
along all three axes for the following systems (from bottom to top curve):
NaCl, quartz, PZT, kaolinite (without H atoms), kaolinite (with H atoms).

Table 5
Representative elapsed times (s) for stage 1 measured under three different conditions.

Condition A: with the Compaq Visual Fortran compiler version 6.1.0; condition B: with the
Intel Fortran 9.0 compiler for a single processor; condition C: with the Intel Fortran 9.0
compiler for two processors running in parallel. Test crystallites were equiaxial with the
lengths specified. �r = 0.01 Å. Atomic displacement parameters were also applied.

Crystallite length (nm),
compiler condition NaCl Quartz PZT

Kaolinite (no H)
’dis = 0

Kaolinite (with H)
’dis = 0

40, A 2 7 11 20 35
40, B 5 14 22 43 74
40, C 2 5 7 14 24
80, A 22 58 86 161 283
80, B 43 112 180 348 611
80, C 18 41 60 116 192
120, C 62 138 202 396 652
160, C 149 329 485 938 1547
200, C 293 652 951 1861 3065



8.2.2. Stage 2. An evaluation of the computation times at

stage 2 is of less importance, as no innovative techniques were

developed here. Furthermore, it is intended to dispense with

the calculation of p.d.f.’s as an intermediate stage in future

work, thereby making stage 2 redundant. In outline, the

computation time is directly proportional to the number of

occupied bins in the p.d.f., to the number of partial p.d.f.’s (i.e.

different atom pair–temperature factor combinations) and to

the resolution of the Q values of the diffraction pattern, i.e.

1/(�Q). The number of occupied bins increases with crystal-

lite size, decreasing bin width �r and decreasing crystal

symmetry. Representative values, which relate to the systems

examined here, are quoted in Table 6.

Unlike in stage 1, compilation conditions A and B lead to

similar results, although the superiority of conditions C is

again apparent. Within a particular system, the elapsed times

scale approximately linearly with crystallite length d.

8.3. Future work

Further progress in the use of the DSE to model powder

diffraction patterns will require the development of an

analytical framework to cross-relate the DSE language of

lattice-pair and cell-pair vectors with the Bragg–Rietveld

language of lattice planes and atomic coordinates. At present

the DSE method is unwieldy because of the calculation of

p.d.f.’s as an intermediate stage. It is desirable to be able to

relate changes in pair vectors directly to changes in diffraction

pattern. Owing to the linearity of the (sin Qr)/Qr transfor-

mation, this should be possible, as is also suggested by the

observation of partial diffraction patterns in x4.5. The adop-

tion of a direct calculation from pair vectors to diffraction

pattern would also allow a full treatment of anisotropic

displacement parameters. At present the necessary directional

information for this is destroyed by the intermediate p.d.f.

encoding.

No explicit use has been made of crystal symmetry in the

present work. However the separation of cell-pair vectors

from lattice-pair vectors offers the potential for further

reductions in computation time here, both because of the

centrosymmetry of the set of cell-pair vectors and because of

equivalent sets of lattice-pair vectors. In addition, the field of

lattice-pair vectors has been mined inefficiently in

the present work, with benefits to be gained by

treating collinear vectors together. The inclusion

of these factors will allow a further reduction in

the number of explicit distance calculations and

therefore computation time.

Once these issues have been addressed, the

potential arises of a direct dialogue between the

DSE approach and the Rietveld structural

refinement method, where the obvious advantage

of having fewer adjustable parameters in the DSE

approach presents itself.

On the application side, refinements in the

modelling of disordered structures are called for.

Limitations in the random-number-generator

approach have been identified, pointing towards the need for a

more analytical treatment. The extension to more complex

types of structural disorder, for example turbostratic disorder

in 2:1 clay minerals, would be a fruitful direction for further

work. In addition, the derivation of modified equations for

Nðnx; ny; nzÞ, to apply to crystal habits other than parallele-

pipedal, would be a welcome development.

The continuous progression in calculated diffraction

patterns from nano- to microscales suggests that the DSE

method could be developed to gain a handle on particle-size

distributions at the very fine end. This would also be relevant

for a quantitative treatment of the mineralogy of plastic clays,

since the main issues of crystalline disorder and fine particle

sizes both affect the observed diffraction patterns in different

ways.

The Application Support Team of PANalytical BV in

Almelo and Professor Dr Gerold Brachtel are thanked for

helpful discussions.
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